Constructing high complexity synthetic libraries of long ORFs using in vitro selection.

نویسندگان

  • G Cho
  • A D Keefe
  • R Liu
  • D S Wilson
  • J W Szostak
چکیده

We present a method that can significantly increase the complexity of protein libraries used for in vitro or in vivo protein selection experiments. Protein libraries are often encoded by chemically synthesized DNA, in which part of the open reading frame is randomized. There are, however, major obstacles associated with the chemical synthesis of long open reading frames, especially those containing random segments. Insertions and deletions that occur during chemical synthesis cause frameshifts, and stop codons in the random region will cause premature termination. These problems can together greatly reduce the number of full-length synthetic genes in the library. We describe a strategy in which smaller segments of the synthetic open reading frame are selected in vitro using mRNA display for the absence of frameshifts and stop codons. These smaller segments are then ligated together to form combinatorial libraries of long uninterrupted open reading frames. This process can increase the number of full-length open reading frames in libraries by up to two orders of magnitude, resulting in protein libraries with complexities of greater than 10(13). We have used this methodology to generate three types of displayed protein library: a completely random sequence library, a library of concatemerized oligopeptide cassettes with a propensity for forming amphipathic alpha-helical or beta-strand structures, and a library based on one of the most common enzymatic scaffolds, the alpha/beta (TIM) barrel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sequential Strand-Displacement Strategy Enables Efficient Six-Step DNA-Templated Synthesis

We developed a sequential strand-displacement strategy for multistep DNA-templated synthesis (DTS) and used it to mediate an efficient six-step DTS that proceeded in 35% overall yield (83% average yield per step). The efficiency of this approach and the fact that the final product remains linked to a DNA sequence that fully encodes its reaction history suggests its utility for the translation o...

متن کامل

Phage display of cDNA libraries: enrichment of cDNA expression using open reading frame selection.

Phage display technologies are powerful tools for selecting binding ligands against purified molecular targets, live cells, and organ vasculature. However, the selection of natural ligands using phage display has been limited because of significant problems associated with the display of complex cDNA repertoires. Here we describe the use of cDNA fragmentation and open reading frame (ORF) select...

متن کامل

Epitope mapping using mRNA display and a unidirectional nested deletion library.

In vitro selection targeting an anti-polyhistidine monoclonal antibody was performed using mRNA display with a random, unconstrained 27-mer peptide library. After six rounds of selection, epitope-like peptides were identified that contain two to five consecutive, internal histidines and are biased for arginine residues, without any other identifiable consensus. The epitope was further refined b...

متن کامل

A quick in vitro pathway from prokaryotic genomic libraries to enzyme discovery.

Screening of prokaryotic genomes in order to identify enzymes with a desired catalytic activity can be performed in vivo in bacterial cells. We propose a strategy of in vitro expression screening of large prokaryotic genomic libraries based on Escherichia coli cell-free transcription-translation systems. Because cell-based expression may be limited by poor yield or protein misfolding, cell-free...

متن کامل

DNA-templated organic synthesis and selection of a library of macrocycles.

The translation of nucleic acid libraries into corresponding synthetic compounds would enable selection and amplification principles to be applied to man-made molecules. We used multistep DNA-templated organic synthesis to translate libraries of DNA sequences, each containing three "codons," into libraries of sequence-programmed synthetic small-molecule macrocycles. The resulting DNA-macrocycle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 297 2  شماره 

صفحات  -

تاریخ انتشار 2000